

B_s Mixing & B_s Lifetime Difference @ DØ

Tulika Bose

Columbia University

(On behalf of the DØ Collaboration)

PANIC 2005 Tuesday, October 25, 2005

The Unitarity Triangle

in the SM due to the CKM matrix

Constraining the CKM matrix redundantly using different measurements of the angles/sides is a sensitive probe of New Physics

'bs' (Squashed unitarity triangle)

 $\beta \rightarrow \beta_s$ SM: β_s small \Rightarrow CP violation is small

Checking this is complementary to measuring the sides/angles of THE Unitarity Triangle

(currently only at the Tevatron)

2

B Physics @ DØ

$$\sigma(p\overline{p} \to b\overline{b}) \approx 150 \mu b @ 1.96 \text{ TeV}$$

$$\sigma(e^+e^- \to b\overline{b}) \approx 7nb @ Z^0$$

$$\sigma(e^+e^- \to B\overline{B}) \approx 1nb @ \Upsilon(4S)$$

Large production cross-section All B species, including $\mathbf{B_s}$, $\mathbf{B_c}$, $\mathbf{\Lambda_b}$

Rich B Physics program at DØ benefits from :

- Large muon acceptance: $|\eta| < 2$
- Forward tracking coverage: $|\eta| < 2.0 \; (tracking), \; |\eta| \; < 3 \; (Si)$
- Robust muon trigger

B_s Mixing: 610 pb⁻¹

B_s Lifetime difference: 450 pb⁻¹

Mixing Phenomenology

$$\widehat{H} \begin{pmatrix} B^0 \\ \overline{B}^0 \end{pmatrix} = \begin{pmatrix} M - \frac{i\Gamma}{2} & M_{12} - \frac{i\Gamma_{12}}{2} \\ M_{12}^* - \frac{i\Gamma_{12}^*}{2} & M - \frac{i\Gamma}{2} \end{pmatrix} \begin{pmatrix} B^0 \\ \overline{B}^0 \end{pmatrix}$$

M₁₂: from real part of box diagram, dominated by top quark

 Γ_{12} : from imaginary part of box diagram, dominated by **charm**

Two physical states (heavy and light B_s) propagate with distinct masses and lifetimes

$$B_L = p \mid B_s \rangle + q \mid \overline{B}_s \rangle \approx \text{cp even}$$

$$B_L = p | B_s \rangle + q | \overline{B}_s \rangle \approx \text{cp even}$$
 $B_H = p | B_s \rangle - q | \overline{B}_s \rangle \approx \text{cp odd}$

$$\Delta m = M_H - M_L \approx 2|M_{12}|$$

$$\Delta m = M_H - M_L \approx 2|M_{12}|$$
 $\Delta \Gamma = \Gamma_L - \Gamma_H \approx 2|\Gamma_{12}|\cos\phi$

CP violating phase
$$\phi = \arg \left(-\frac{M_{12}}{\Gamma_{12}} \right) \sim -0.03$$
 (SM) \Rightarrow mass eigenstates \approx CP eigenstates

 Δm_d has been precisely measured: **0.509** ± **0.004** ps⁻¹

$$\Delta m_d = \frac{G_F^2 m_W^2 \eta S(m_t^2 / m_W^2)}{6\pi^2} m_B \left[f_{B_d}^2 B_{B_d} \middle| V_{td}^* V_{tb} \middle|^2 \right]$$

$$f_{Bd}^2 B_{Bd} = (228 \pm 30 \pm 10 \text{ MeV})^2$$

$$|V_{td}| \text{ from } \Delta m_d \text{ limited by } \sim 15\%$$

$$f_{Bd}^2B_{Bd} = (228 \pm 30 \pm 10 \text{ MeV})^2$$

$$\therefore \text{ consider ratio } \frac{\Delta m_s}{\Delta m_d} = \frac{m_{Bs}}{m_{Bd}} \frac{f_{Bs}^2 B_{Bs}}{f_{Bd}^2 B_{Bd}} \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2} = \frac{m_{Bs}}{m_{Bd}} \xi^2 \frac{\left|V_{ts}\right|^2}{\left|V_{td}\right|^2}$$

$$\Rightarrow \xi = 1.21 \pm 0.04 \pm 0.05$$
Many theoretical uncertainties cancely

$$\xi = 1.21 \pm 0.04 \pm 0.05$$

Many theoretical

Determine $|V_{ts}|/|V_{td}| \sim 5\%$ precision

Measure $\Delta m_s \Rightarrow constrain V_{td}$

Mixing analysis in a nutshell

```
K mixing \Rightarrow direct & indirect CPV B_d mixing \Rightarrow heavy top mass v mixing \Rightarrow neutrino mass \neq 0 v mixing v mixing v neutrino mass v mixing v neutrino mass v neutrino neutrino mass v neutrino mass v neutrino mass v neutrino neutrino mass v neutrino mass v neutrino neutrino mass v neutrino neutrin
```

Current world limit: $\Delta m_s > 14.4 \text{ ps}^{-1} @95\% \text{ CL}$

 B_s oscillates > 30 times faster than B^0 ! Δm_s measurement experimentally very challenging

Analysis Strategy

- Select final states suitable for the study
- Determine proper decay time
- Obtain # of oscillated or non-oscillated events (flavor tagging)
 - Tag B meson flavor at decay time (final state)
 - Tag B meson flavor at **production** time (initial state)
 If flavor of B at decay = flavor at production ⇒ B hadron non-oscillated
 If flavor of B at decay ≠ flavor at production ⇒ B hadron oscillated
- Fit for Δ m (or amplitude at Δ m_s) $A(t_{B_s}) = \frac{N^{non-osc}(t_{B_s}) N^{osc}(t_{B_s})}{N^{non-osc}(t_{B_s}) + N^{osc}(t_{B_s})} \propto \cos(\Delta m_s \cdot t_{B_s})$

Essential ingredients

610 pb⁻¹

$$B_S \rightarrow D_S \mu X ; D_S \rightarrow K^{*0}K ; K^{*0} \rightarrow K\pi$$

Determine proper time:

Inferred from B candidate's decay length (w.r.t. PV) and its momentum. Semileptonic decays \Rightarrow Bs momentum can only be reconstructed partially.

decay length vector in the transverse plane

$$ct_{B_s} = x^M \cdot K \qquad K \equiv p_T^{D_s \mu} / p_T^{B_s} \qquad \qquad x^M \equiv \left(\widehat{L}_{xy}\right) \cdot \vec{p}_{xy}^{D_s \mu} / \left(p_T^{D_s \mu}\right)^2 \cdot m_{B_s}$$

 $M_{(KK)\pi}(GeV/c^2)$

"K factor" "visible proper decay length (VPDL)" 6

VPDL resolution and K-factor distributions obtained from simulation

Flavor Tagging

- Tag B meson flavor at decay: use charge of final state particles: b→μ-
- Tag B meson flavor at production: use opposite-side techniques
 - use decay products of the "other b" to infer the initial flavor of the reco'd B_s
 - Soft lepton tagging (SLT) : b→μ- or e⁻
 - Muon Jet Charge, secondary vertex
- Make B_d oscillation measurement
 - use same opposite-side tagger as for B_s

$$D = 0.384 \pm 0.014 \pm 0.006$$

 $\varepsilon D^2 = (1.94 \pm 0.14 \pm 0.09)\%$

$$\Delta m_d = 0.501 \pm 0.030 \pm 0.016 \text{ ps}^{-1}$$

Consistent with the world average

Tagging efficiency ~ 12.3% Useful B_S signal fraction ~ 88%

Asymmetries

- Split B_s data sample into different bins of VPDL:
- Obtain # of events tagged as "non-oscillated" & "oscillated" for each VPDL bin by fitting D_s mass spectra:
- Calculate asymmetry for each VPDL bin (A^{meas}):

$$A_i^{meas} = \frac{N_i^{non-osc} - N_i^{osc}}{N_i^{non-osc} + N_i^{osc}}$$

No obvious oscillations...

Calculate expected asymmetry for each bin (Ae):

B meson lifetimes and branching rates from PDG K-factor distributions, decay length resolution, reconstruction efficiencies from MC

Amplitude Fit Method

Dominant sources of systematic uncertainty: understanding of VPDL resolution, K factors, Sample composition, uncertainty in tagging dilution.

Combined DØ result:

Limit: $\Delta m_s > 7.3 \text{ ps}^{-1} @ 95\% \text{ C.L.}$

Sensitivity: 9.5 ps⁻¹ @ 95% C.L.

sensitivity

20 22.5 25

 $\Delta m_s (ps^{-1})$

15 17.5

Future Improvements

Analysis techniques:

- Add more decay channels
- Improve opposite-side tagging,
- Add same-side tagging
- Unbinned likelihood fit: event-by-event resolution and tagging purity

Hadronic B_s decays:

 Trigger on flavor-tagging muon, verify yield (Excellent decay length resolution)

Bandwidth increase:

- Current limit for B triggers is rate to tape
- Bandwidth increase from 50 to 100Hz
- Proposal to process extra 50Hz of B Physics data at remote institutions

Hardware - new Layer 0 Silicon

- Radius of 1.7cm inside current detector
- Improve decay length resolution by ~30% even if lose Layer 1

And more data!

B_s lifetime difference analysis

 $B_s \rightarrow J/\psi (\mu^+\mu^-) \phi (K^+K^-)$ Pseudoscalar \rightarrow Vector Vector

Three waves: **S**, **P**, **D** or \mathbf{A}_0 , $\mathbf{A}_{||}$, \mathbf{A}_{\perp}

S, D (Parity, CP even): linear combination of A_0 , $A_{||}$

 ${f P}$ (Parity, CP odd): ${f A}_{\perp}$

Decay parameterised by three angles:

Azimuthal (ϕ) and polar angle (θ) wrt the direction of the

 μ + in the J/ ψ rest frame

Polar angle (ψ) of K⁺ in ϕ rest frame

Both CP-even and CP-odd present but are well separated in **transversity** (**cos**θ)

We integrate over two angles: ϕ and ψ

$$\frac{d\Gamma(t)}{d\cos\theta} \propto \left(\left| A_0(t) \right|^2 + \left| A_{\parallel}(t) \right|^2 \right) \frac{3}{8} \left(1 + \cos^2\theta \right) + \left| A_{\perp}(t)^2 \right| \frac{3}{4} \sin^2\theta$$

Integral for flat efficiency in ψ , ϕ

Non-uniform acceptance in ϕ integration leads to small correction term

φ meson rest frame

Analysis strategy

Measure **TWO** distinct lifetimes (or, equivalently, $\Delta\Gamma/\Gamma$ and τ)

- fit time evolution & transversity distr. in untagged B_s decays
- If CP is conserved, they can be interpreted as the lifetimes of the two B_s mass eigenstates

Simultaneous fit to mass, lifetime and transversity using an unbinned maximum

likelihood method Candidate Events

andidate Events Fraction of signal
$$Likelihood = \prod_{i=1}^{N} \left[f_{sig} F_{sig}^{i} + (1 - f_{sig}) F_{bkg}^{i} \right]$$
Product of mass, proper decay length and transversity PDF

Product of mass, proper decay length and transversity PDFs

19 parameters:

- signal fraction
- signal mass, width
- CP-odd fraction at t=0
- $c_{\tau} = c/\overline{\Gamma}$, $\overline{\Gamma} = (\Gamma_{I} + \Gamma_{H})/2$
- $\Delta\Gamma / \overline{\Gamma}$
- bkg slope in mass (1 prompt, 1 long-lived)
- σ(ct) scale
- bkg ct shape
- bkg transversity (2 prompt +2 long-lived)

$$\overline{\Gamma} = \frac{\Gamma_H + \Gamma_L}{2}$$

 R_{\perp} : CP-odd fraction at t=0

B_s mass & Lifetime

450 pb⁻¹

Signal Fit Results		
events	513 ± 33	
$\mathbf{c}\overline{\mathbf{\tau}} = \mathbf{c}/\overline{\Gamma}$	416 ⁺³⁹ μm	
$\Delta\Gamma/\overline{\Gamma}$	$0.24^{+0.28}_{-0.38}$	
\mathbf{R}_{\perp}	0.16 ± 0.10	

Semileptonic constraints

Semileptonic (flavor specific) measurements provide an independent relation of $\Delta\Gamma$ and Γ , leading to a significant improvement to $\Delta\Gamma$

Blue lines: World ave. flavor specific values (from semileptonic decays)

A single-lifetime fit applied to flavor specific final state measures $\Gamma_{\rm fs}$ = 1/ $\tau_{\rm fs}$

$$ar{ au}=ar{ au}(f.s.)rac{1+\left(rac{\Delta\Gamma}{2\Gamma}
ight)^2}{1-\left(rac{\Delta\Gamma}{2\Gamma}
ight)^2} \, {}_{50\%}$$
 CP-even 50% CP-odd

$$\begin{array}{c} \mathbf{D} \varnothing & \frac{\Delta\Gamma}{\bar{\Gamma}} = 0.24^{+0.28}_{-0.38} \\ & \bar{\tau} = 1.39^{+0.13}_{-0.16} \text{ ps} \\ \\ \mathbf{CDF} & \frac{\Delta\Gamma}{\bar{\Gamma}} = 0.65^{+0.25}_{-0.33} \\ & \bar{\tau} = 1.40^{+0.15}_{-0.13} \text{ ps} \\ \\ \text{With f.s} & \frac{\Delta\Gamma}{\bar{\Gamma}} = 0.25^{+0.14}_{-0.15} \\ & \bar{\tau} = 1.39 \pm 0.06 \text{ ps}_{14} \\ \end{array}$$

Mixing Summary

Preliminary limit on B_s mixing based on 610 pb⁻¹:

$$\begin{array}{l} \textbf{B}_S \rightarrow \textbf{D}_S \; \mu \; \textbf{X} \; ; \; \textbf{D}_s \rightarrow \phi \; \pi \; ; \; \phi \rightarrow \textbf{K}^+\textbf{K}^- \\ \textbf{B}_S \rightarrow \textbf{D}_S \; \mu \; \textbf{X} \; ; \; \textbf{D}_s \rightarrow \textbf{K}^{*0}\textbf{K} \; ; \; \textbf{K}^{*0} \rightarrow \textbf{K} \pi \end{array}$$

Limit: $\Delta m_s > 7.3 \text{ ps}^{-1} @ 95\%$ confidence

Sensitivity: 9.5 ps⁻¹ @ 95% confidence

Already competitive (second best sensitivity after ALEPH)

Excellent prospects in future with analysis/hardware improvements and more data

Can potentially cover entire SM range:
If no oscillations are observed: New Physics at some C.L.!

Lifetime Difference Summary 450 pb-1

Fit Values

$$\frac{\Delta \Gamma}{\overline{\Gamma}} = 0.24^{+0.28}_{-0.38} (stat)^{+0.03}_{-0.04} (syst)$$

$$\tau_H = 1.58^{+0.44}_{-0.43}(stat)^{+0.012}_{-0.017}(syst) ps$$

$$R_{\perp}$$
=0.16±0.10(stat)±0.02(syst)

$$\overline{\tau} = 1.39^{+0.13}_{-0.16}(stat)^{+0.01}_{-0.02}(syst) ps$$

Flavor Specific Decay Constraint

$$\frac{\Delta \Gamma}{\overline{\Gamma}} = 0.25^{+0.14}_{-0.15}$$
 $\overline{\tau} = 1.39 \pm 0.06 \ ps$

$$\bar{\tau} = 1.39 \pm 0.06 \ ps$$

Ratio to B_d

$$\overline{\tau}_{Bd} = 1.530 \pm 0.043 (stat) \pm 0.023 (syst) ps$$
 $\frac{\overline{\tau}_{Bs}}{\overline{\tau}_{Bd}} = 0.91 \pm 0.09 (stat) \pm 0.003 (syst) ps$

Good agreement with theory

Future precision will improve with More data Three angle analysis Using a tagged sample.... Might be able to exclude models predicting large CP violating phase Observe CP violation different from SM predictions

BACKUP SLIDES (Mixing)

Sensitivity

Statistical Significance:

$$S(\Delta m, \sigma_t) = \sqrt{\frac{\varepsilon D^2 S}{2}} \sqrt{\frac{S}{S+B}} \times e^{-(\Delta m \sigma_t)^2/2}$$
Flavor tagging
$$D=2P-1$$
Signal purity
$$P: \text{ correct tag prob.}$$
For large Δm , proper time resolution (σ_t)
becomes v. imp.

VPDL resolution

VPDL resolution from full detector simulation;

Describe VPDL resolution using 3 Gaussians

Adjusted by one global scale factor derived from data/simulation comparison.

$$D_s \rightarrow \phi \pi$$

$$D_s \rightarrow K^{*0}K$$

VPDL resolution depends on the VPDL (large VPDL correlated with large boost, *i.e.* with more collimated decay products).

Use a VPDL dependent scale factor

Initial state flavor tagging

If muon found with $\cos \phi(p_{\mu}, p_B) < 0.8...$

Combined Tagger

- For each discriminating variable x_i (described previously) construct P.D.F.s for the initial b [b] quark
- Combine different taggers using likelihood ratios: $\int_{a}^{b} (ax)^{a}$

$$Y = \prod_{i}^{n} y_{i} ; y_{i} = \frac{f_{i}^{b}(x_{i})}{f_{i}^{b}(x_{i})}$$

 Apply transformation to form single flavor-tag variable:

$$d=(1-y)/(1+y)$$

Tagger performance variables

Efficiency:
$$\frac{N_{correct} + N_{wrong}}{N_{correct} + N_{wrong} + N_{notag}}$$
 How often the tagging algorithm 'fires'

Dilution
$$D = \frac{N_{correct} - N_{wrong}}{N_{correct} + N_{wrong}}$$

How often the tagging algorithm gives the correct answer

$$D = 2\eta - 1$$

 η : purity of a tagger

Maximize tagging power: εD²

Dilution in data

- Make B_d oscillation measurement with same opposite-side tagger as for B_s
- Take |d| > 0.3:

$$A_{i} = \frac{N_{osc} - N_{nosc}}{N_{osc} + N_{nosc}} = D \cos \Delta mt$$

- Amplitude gives dilution
- Frequency gives ∆m_d

$$\Delta m_d = 0.501 \pm 0.030 \pm 0.016 \text{ ps}^{-1}$$
 $D(B_d) = 0.414 \pm 0.023 \pm 0.017$
 $D(B^+) = 0.368 \pm 0.016 \pm 0.008$

$$D_{comb.} = 0.384 \pm 0.014 \pm 0.006$$

 $\varepsilon D^2 = (1.94 \pm 0.14 \pm 0.09)\%$

Use D_{comb.} as input to B_s analysis

 (signal and opposite-side B species uncorrelated)

Sample Composition

Composition of signal peak: estimate using MC simulation, PDG BRs...

$D_s \rightarrow K^{\star_0}K$

Decay	Sample fraction	
$B_s \rightarrow D_s \mu v$	22.8%	
$B_s \rightarrow D_s^* \mu V$	55.1%	
$B_s \rightarrow D^*_{0s} \mu v$	1.2%	
$B_s \rightarrow D_{1s}^* \mu v$	3.0%	
$B_s \rightarrow D_s \tau V$	1.6%	
$B_s \rightarrow D_s D_s X$	4.2%	
$B_s \rightarrow D_s DX$	0.9%	
$B^0 \rightarrow D_s DX$	5.6%	
$B^{-} \rightarrow D_s DX$	5.7%	

cc Contamination

Gluon splitting, charm hadrons close to each other

Flavor tagging suppressed contribution by factor ~ 3

Estimated fraction of $(3.5 \pm 2.5)\%$ from MC added in

Systematic errors

Done for each value of Δm_s

Example: $D_s \rightarrow K^{*0}K$

Dominant systematic (7 ps ⁻¹)	σ^{tot}
Mass fitting	0.13
Sample composition	0.10
K-factor uncertainty	0.09
VPDL res. scale factor uncertainty	0.07
Dilution uncertainty	0.04

BACKUP SLIDES (Lifetime difference)

- → Mass: double Gaussian with common mean (signal) two 1st order polynomials (prompt & non prompt)
- Lifetime: 2 exponential x gaussians (CP odd and even)
 1 gaussian (prompt) 3 exponentials (+ and cτ non prompt)
- Transversity: (1+cos²θ) G(θ) CP even (1-cos²θ) G(θ) CP odd
 2 polynomials (G(θ) = 1+Acos²θ+Bcos⁴θ) for prompt & non prompt

Untagged B_s rate in time/angles

Detector Acceptance (MC)

$$F(\phi) = 1 + J \cos(2\phi) + K \cos^2(2\phi)$$

$$G(\cos \theta) = 1 + B\cos^2\theta + C\cos^4\theta$$

$$H(\cos \psi)$$
 flat distribution

3 angles \rightarrow 1 angle

Inserting H($\cos \psi$) =1, and F(ϕ) =1 + J $\cos(2\phi)$ + K $\cos^2(2\phi)$, and integrating over $\cos \psi$ and ϕ , we obtain a 1-angle time evolution:

$$\begin{split} \frac{d^3\Gamma \to J/\psi \; (\to |^{t}|) \; \varphi(\to K^{t}|K)}{d\cos\theta \; dt} &= \; N \, \pi \left[\; \left(|A_0(0)|^2 + |A_{||}(0)|^2 \right) e^{-\Gamma_L t} \; (1 + \cos^2\theta \;) \right. \\ &+ \frac{K}{2} \left\{ \left(|A_0(0)|^2 + |A_{||}(0)|^2 \right) e^{-\Gamma_L t} \; (1 + \cos^2\theta \;) \right. \\ &+ 2 \, |A_1(0)|^2 \, e^{-\Gamma_H t} \sin^2\theta \; \right\} \\ &- \frac{J}{2} \left(|A_0(0)|^2 - |A_{||}(0)|^2 \right) e^{-\Gamma_L t} \sin^2\theta \; + 2 \, |A_1(0)|^2 \, e^{-\Gamma_H t} \sin^2\theta \; \right] \; G(\cos\theta) \\ &- 0.355 \pm 0.066 \; \; (from CDF) \\ &- |A_0(0)|^2 + |A_{||}(0)|^2 + |A_1(0)|^2 = 1 \end{split}$$

defining, $R_1 = |A_1(0)|^2$

In pursuit of new physics

(1) We measure correlated parameters

 $\Delta\Gamma/\Gamma = (\Delta\Gamma/\Gamma)_{SM} \cos^2(\delta\phi)$ and τ

(2) Semileptonic measurements relate

 $(\Delta\Gamma/\Gamma)_{SM}\cos(\delta\phi)$ and τ .

Fit to (1--3) for $\cos(\delta\phi)$:

$$|\cos(\delta\phi)| = 1.46^{+0.73}_{-0.69}$$

(3) SM predicts (A. Lenz,hepph/0412007)

$$(\Delta\Gamma/\Gamma)_{SM} = 0.12\pm0.05$$

 Γ_{19} stems from final states common to B_s and \overline{B}_s .

Crosses: Effective $|\Delta B| = 1$ operators from W-exchange.

 Γ_{12} is a CKM-favored tree-level effect associated with final states containing a (\bar{c}, c) pair.

Angular momentum

Angular Momentum

- → 0^{-} → 1^{-} L = relative orbital angular momentum
 - → So L=0,2 are CP even and L=1 is CP odd

We integrate over 2 angles (transversity is good angle for CP odd/even separation)

Non-uniform acceptance in ϕ integration leads to small correction term

Very Small
$$\frac{d^2 \Gamma}{d \cos \theta \, d \, t} \propto \left[N_1 \left(\left| A_0(0) \right|^2 - \left| A_{\parallel}(0) \right|^2 \right) e^{-\Gamma_L t} \left(1 + \cos^2 \theta \right) + 2 N_2 \left| A_{\perp}(0) \right|^2 e^{-\Gamma_H t} \sin^2 \theta \right]$$

$$\mathbf{R}_{\perp} \equiv \mathbf{CP} \text{ odd fraction at } \mathbf{t} = \mathbf{0} \qquad \mathbf{CP} \text{ Even} \qquad \mathbf{CP} \text{ Odd}$$

Systematic errors

Source	$c\tau(B_s^0), \mu\mathrm{m}$	$\Delta\Gamma/\overline{\Gamma}$	R_{\perp}
Acceptance vs. $\cos \theta$	± 0.6	± 0.001	± 0.005
Integration over φ , ψ	± 0.2	± 0.001	± 0.02
Procedure test	± 2.0	± 0.025	± 0.01
Momentum scale	-3.0	_	-
Signal mass model	± 1.0	+0.009, -0.017	± 0.007
Background mass	-3.5	+0.02	-0.002
Detector alignment	± 2.0	TO A STATE OF THE	
Background model	± 0.5	± 0.016	± 0.005
Total	-5.6, +3.1	-0.04, +0.03	± 0.02

Selection cuts

```
>1.5 GeV (> 4.0 GeV if |η| < 1.0)
                       p<sub>T</sub> of μ<sup>+</sup>μ<sup>-</sup>
                   \chi^2 of J/\psi vertex
                                                                                   < 10.0
                J/ψ candidate mass
                                                                      2.90 < M(\mu^+,\mu^-) < 3.25 \text{ GeV}
               J/ψ decay length error
                                                                                < 0.03 cm
                      p<sub>T</sub> of K<sup>+</sup> K<sup>-</sup>
                                                                                 >0.7 GeV
                    \chi^2 of \phi vertex
                                                                                   < 15.0
                  1.01 < M(K^+,K^-) < 1.03 \text{ GeV}
                         p<sub>⊤</sub> of φ
                                                                                > 1.5 GeV
                  SMT hits on track
                                                                                     > 0
                  CFT hits on track
                                                                                     > 0
              SMT+CFT hits on track
                                                                                     > 3
                        p<sub>T</sub> of B<sub>s</sub>
                                                                                > 6.0 GeV
         B candidate decay length error
                                                                                < 0.006 cm
Absolute decay length difference between B<sub>s</sub>
                 candidate and J/\psi
                                                                                < 0.04 cm
                 B<sub>s</sub> candidate mass
                                                                       5.0 < M(J/\psi,\phi) < 5.8 \text{ GeV}
```